百科

数学期望公式

  • 喜欢学习网
  • 2024-05-07 14:16:34

期望公式

X ;1,X ;2,X ;3,……,X。

n为这离散型随机变量,p(X1),p(X2),p(X3),……p(Xn)为这几个数据的概率函数。在随机出现的几个数据中p(X1),p(X2),p(X3),……p(Xn)概率函数就理解为数据X1,X2,X3,……,Xn出现的频率f(Xn)。

在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。

需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。

大数定律规定,随着重复次数接近无穷大,数值的算术平均值几乎肯定地收敛于期望值。

离散型随机变量与连续型随机变量都是由随机变量取值范围(取值)确定。

数学期望的定义

在概率论和统计学中,数学期望(或均值)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。

随机变量包括离散型和连续型,数学期望的计算也分离散型和连续型。

离散型

如果随机变量只取得有限个值或无穷能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随机变量称为离散型随机变量。

连续型

若随机变量X的分布函数F(x)可表示成一个非负可积函数f(x)的积分,则称X为连续型随机变量,f(x)称为X的概率密度函数(分布密度函数)。

补充

在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。

需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。

大数定律表明,随着重复次数接近无穷大,数值的算术平均值几乎肯定地收敛于期望值。

全期望公式

全期望公式是利用条件期望计算数学期望的公式:EY=E[E(Y|X)]。全期望公式是条件数学期望的一个非常重要的性质,其重要性堪比全概率公式在概率中的作用。

相关文章

  • 跨专业心理学考研是否有要求
  • 哦亚西啥意思
  • 宜昌初中排名
  • 商户单号是多少位
  • big怎么自然拼读
  • 争辩的近义词是什
  • 慢慢开头的成语
  • 柯南集数每集名称
  • 耽美词语的意思
  • 两字好词加四字的好词急用
  • 世界坚果十大品牌(国内坚果品牌大全 排行榜)
  • 关于世界之最感人的小短片的信息
  • 李莲英的舌功很厉害(李莲英的三个绝活)
  • 马航mh370真相大揭秘(知乎 马航mh370的真相是什么)
  • 世界十大推理漫画(著名推理漫画)
  • 十大武侠电影中国排名(中国经典武侠电影排行榜前十名)
  • 世界上最恐怖最恐怖的狗(请问世界上最恐怖的狗是什么狗)
  • 2008年日历表(2008年日历表格)
  • 世界上最嗨的歌曲(全世界最嗨的歌是哪一首)
  • 包含寡人之疾txt的词条