百科

数学期望公式

  • 喜欢学习网
  • 2024-05-07 14:16:34

期望公式

X ;1,X ;2,X ;3,……,X。

n为这离散型随机变量,p(X1),p(X2),p(X3),……p(Xn)为这几个数据的概率函数。在随机出现的几个数据中p(X1),p(X2),p(X3),……p(Xn)概率函数就理解为数据X1,X2,X3,……,Xn出现的频率f(Xn)。

在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。

需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。

大数定律规定,随着重复次数接近无穷大,数值的算术平均值几乎肯定地收敛于期望值。

离散型随机变量与连续型随机变量都是由随机变量取值范围(取值)确定。

数学期望的定义

在概率论和统计学中,数学期望(或均值)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。

随机变量包括离散型和连续型,数学期望的计算也分离散型和连续型。

离散型

如果随机变量只取得有限个值或无穷能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随机变量称为离散型随机变量。

连续型

若随机变量X的分布函数F(x)可表示成一个非负可积函数f(x)的积分,则称X为连续型随机变量,f(x)称为X的概率密度函数(分布密度函数)。

补充

在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。

需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。

大数定律表明,随着重复次数接近无穷大,数值的算术平均值几乎肯定地收敛于期望值。

全期望公式

全期望公式是利用条件期望计算数学期望的公式:EY=E[E(Y|X)]。全期望公式是条件数学期望的一个非常重要的性质,其重要性堪比全概率公式在概率中的作用。

相关文章

  • 雨棚的定义
  • 孝感地区所有高中
  • 如何当一名出色的/卓越的/优异的/杰出的的班组长
  • jeanswest是什么牌子额
  • MTV是什么中文意思
  • 什么叫文迪
  • 9大服务用语
  • 心理学有哪些知名专家
  • 横眉冷对到底是什么意
  • 你是这样的人原唱
  • 世界十大防疫国家(世界各国防疫排名)
  • 世界上的人最软(世界上最软的床)
  • 倾城名字(倾城名字的含义是什么)
  • 世界十大旅行杂志排名(环球旅行杂志排行)
  • 世界十大卸妆油品牌排行榜(世界十大卸妆油品牌排行榜图片)
  • 金伯帆被砸后的照片(金伯帆被谁砸的)
  • 汇丰银行是哪个国家的(汇丰银行开户条件)
  • 关于世界十大健美先生的信息
  • 世界十大名贵手机(全世界最贵的手机牌子)
  • 世界上最感动的歌曲英文(很感动的英文歌)