等比数列的两个求和公式
等比数列求和公式:
1. Sn=n×a1(q=1)
2. Sn=a1(1-q^n)/(1-q)=(a1-an*q)/(1-q)=a1(q^n-1)/(q-1)(q≠1)
(q为公比,n为项数)
如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。注:q=1 时,an为常数列。即a^n=a。
等比数列求和公式:
1. Sn=n×a1(q=1)
2. Sn=a1(1-q^n)/(1-q)=(a1-an*q)/(1-q)=a1(q^n-1)/(q-1)(q≠1)
(q为公比,n为项数)
如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。注:q=1 时,an为常数列。即a^n=a。