百科

因式分解的技巧和方法公式法

  • 喜欢学习网
  • 2024-11-24 12:41:34

因式分解12种方法分别是:

提公因法、应用公式法、分组分解法、十字相乘法、配方法、添项法、换元法、求根法、图象法、主元法、利用特殊值法、待定系数法 。

方法详解:

1、提公因法,如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。

2、应用公式法,由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。

3、分组分解法,要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)。

4、十字相乘法,对于mx +px+q形式的多项式,如果a×b=m, c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)。5、配方法,对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。

6、拆、添项法,可以把多项式拆成若干部分,再用进行因式分解。 

 7、换元法,有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。 

 8、求根法,令多项式f(x)=0,求出其根为x , x , x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x )。 

 9、图象法,令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x , x , x ,……x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x )。

10、主元法 先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。 

 11、利用特殊值法 将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。 

 12、待定系数法 首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。

 因式分解指的是把一个多项式分解为几个整式的积的形式,它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.

1、提公因式法①公因式:各项都含有的公共的因式叫做这个多项式各项的公因式。②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.am+bm+cm=m(a+b+c)③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的. 如果多项式的靠前项是负的,一般要提出“-”号,使括号内的靠前项的系数是正的.2、运用公式法①平方差公式:. a^2-b^2=(a+b)(a-b)②完全平方公式: a^2±2ab+b^2=(a±b)^2※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.③立方和公式:a^3+b^3= (a+b)(a^2-ab+b^2).立方差公式:a^3-b^3= (a-b)(a^2+ab+b^2).④完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3⑤a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)]a^m+b^m=(a+b)[a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)](m为奇数)3、分组分解法分组分解法:把一个多项式分组后,再进行分解因式的方法.分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式.4、拆项、补项法拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形.

相关文章

  • 佳的全部组词
  • 球体体积计算公式
  • 怎么查询监理工程师注册信息查询
  • 护理专业专升本要考哪些科目
  • 学科评估几年进行一次
  • 英语桃子怎么写
  • 志愿者主要做什么
  • 胜利者用英语怎吗说
  • 飞禽走兽打法
  • 哈尔滨所有私立高中
  • 世界上最知名的笔(世界上十大名笔)
  • 深圳世界之最晨谈
  • 世界上最危险的职业(世界上最危险的职业有两个)
  • 世界上最帅的刀(世界上最帅的刀图片)
  • 世界上的人最软(世界上最软的床)
  • 世界上最漂亮的女士脚(世界上那个女人的脚最美)
  • 黄河透明棺材(黄河透明棺材事件真相)
  • 石家庄军长是真实事件吗(石家庄军长是谁)
  • 裸胸照片的简单介绍
  • 十大恐怖电影(十大恐怖电影排行榜)